Endothelial dysfunction as a cellular mechanism for vascular failure.
نویسندگان
چکیده
The regulation of vascular tone, vascular permeability, and thromboresistance is essential to maintain blood circulation and therefore tissue environments under physiological conditions. Atherogenic stimuli, including diabetes, dyslipidemia, and oxidative stress, induce vascular dysfunction, leading to atherosclerosis, which is a key pathological basis for cardiovascular diseases such as ischemic heart disease and stroke. We have proposed a novel concept termed "vascular failure" to comprehensively recognize the vascular dysfunction that contributes to the development of cardiovascular diseases. Vascular endothelial cells form the vascular endothelium as a monolayer that covers the vascular lumen and serves as an interface between circulating blood and immune cells. Endothelial cells regulate vascular function in collaboration with smooth muscle cells. Endothelial dysfunction under pathophysiological conditions contributes to the development of vascular dysfunction. Here, we address the barrier function and microtubule function of endothelial cells. Endothelial barrier function, mediated by cell-to-cell junctions between endothelial cells, is regulated by small GTPases and kinases. Microtubule function, regulated by the acetylation of tubulin, a component of the microtubules, is a target of atherogenic stimuli. The elucidation of the molecular mechanisms of endothelial dysfunction as a cellular mechanism for vascular failure could provide novel therapeutic targets of cardiovascular diseases.
منابع مشابه
P 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملEffects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells
Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...
متن کاملA Review of the Relationship between Obesity and Some Sexual Dysfunction in Men and Women
Introduction: Obesity, one of the major growing problems of the present century is reaching pandemic proportions. Today, a large percentage of men and women of all ages suffer from obesity. The relationship between obesity and its effect on sexual dysfunction through different mechanisms has been documented. Obesity, a risk factor for cardiovascular and metabolic diseases with impaired immune s...
متن کاملTargeting Endothelial Function to Treat Heart Failure with Preserved Ejection Fraction: The Promise of Exercise Training
Although the burden of heart failure with preserved ejection fraction (HFpEF) is increasing, there is no therapy available that improves prognosis. Clinical trials using beta blockers and angiotensin converting enzyme inhibitors, cardiac-targeting drugs that reduce mortality in heart failure with reduced ejection fraction (HFrEF), have had disappointing results in HFpEF patients. A new "whole-s...
متن کاملThe roles of potassium channels in contractile response to urotensin-II in mercury chloride induced endothelial dysfunction in rat aorta
Urotensin-II (U-II), the most potent vasoconstrictor that has recently been recognized as a new candidate in cardiovascular dysfunction, might exert vasoconstriction through, at least partially, potassium channels that are predominant in both endothelial and vascular smooth muscle cells (VSMCs). The present study was designed to evaluate the roles of potassium channels in vascular responses to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 302 3 شماره
صفحات -
تاریخ انتشار 2012